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ABSTRACT

The Future Combat Systems (FCS) will transform
the Army into a faster, more agile force with more
lethal and more survivable capabilities. The FCS re-
quires computational technologies that can simulate
and assess lethality and survivability of the combat
systems under real battlefield situations involving the
global structural dynamics at system level, and highly
localized contact-impact, damage, failure, penetration,
and fragmentation. In order to integrate the aforemen-
tioned capabilities into a standalone computational
code, a computational framework taking into consid-
eration different mechanics descriptions and formula-
tions, different physical events such as structural dy-
namics, contact-impact, damage, failure, penetration,
and fragmentation need to be carefully addressed. In
this regard, different computational formulations in
space such as finite element methods and meshless
methods, and in time such as implicit algorithms, ex-
plicit algorithms, and the like need to be seamlessly
integrated. Existing technologies focus on an isolated
physical event or a limited coupled physical event. A
computational framework that can integrate the afore-
mentioned multi-physical events for combat systems
commonly encountered in real battlefield situations
does not exist to-date. We address the above issues
with applications to engineering problems, and the
present approach compares well with experimental re-
sults.

1. INTRODUCTION

Hydrocodes are important tools for survivability and
lethality of armor/anti-armor applications [Schraml
et al., 2002]. The existing hydrocodes mostly utilize
fracture mechanics based failure models (the failure
of the material is determined by the maximum accu-
mulated plastic strain) [Zukas, 2004]. In contrast to

the fracture mechanics based failure models, which fo-
cus on when the material fails, the continuum dam-
age mechanics based failure models (the failure of the
material is determined by the evolution of an inter-
nal variable that measures the micro-defect density)
can further provide an in-depth understanding of the
physical mechanisms of how the material fails [Krajci-
novic, 2000]. Furthermore, since Lemaitre introduced
an approach to incorporate fracture mechanics based
failure model into the continuum damage mechan-
ics based isotropic damage failure models [Lemaitre,
1985a, Lemaitre, 1985b], the Lemaitre damage model
has been successfully applied for the quasi-static fail-
ure of steel [Celentano et al., 2004] and high-velocity
penetration [Børvik et al., 2001]. The present study
aims to extend the Lemaitre damage model to the hy-
drodynamic type of constitutive model for high veloc-
ity penetration problems.

With the objective towards the development of a
computational framework that can simulate the inte-
grated multi-physics and multi-time scale battlefield
events, the development of highly efficient and scalable
multi-time scale and adaptive semi-implicit/explicit
hybrid dynamic computational is the key for predict-
ing both the long term global dynamic response of
structural systems such as the entire transient response
of the combat system and structural configuration,
in conjunction with effects imparted due to localized
short term dynamic damage due to threats such as
penetration. Quite often, a representative section of
the vehicle component is mostly considered (for ex-
ample a small armor plate section) for the simulation
in survivability/lethality designs. Increasing model fi-
delity requires high mesh resolutions. Longer simula-
tion times are additionally needed to assess post dy-
namic simulations at the system level due to localized
contact-impact-penetration-damage events. Compu-
tational requirements grow dramatically as the size
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and complexity of the computational models increase.
As the element size is decreased to capture the finer
details such as large deformations in geometry and for
overall response, the time step also significantly de-
creases. This is especially cumbersome and also im-
practical for large-scale simulations such as an entire
Army vehicle system to be completed in reasonable
time. Using traditional explicit and implicit finite el-
ement codes, the coupling of standalone explicit and
implicit codes is not feasible and/or practical due to:
1) approximation errors in transferring results from
one code to the other, and 2) impractical to do data
transfer if damage, penetration and fragmentation are
involved with flying debris. Towards this end, the
present efforts circumvent several existing drawbacks
via new computational methods and algorithms and
include the total integration and fusion of various com-
putational technologies. Therefore, an approach of
adaptive multi-scale semi-implicit/explicit hybrid for-
mulations and computational algorithms would capi-
talize upon both the advantages of implicit and explicit
time integration algorithms to avoid the existing draw-
backs and is desirable for the simulations of numerous
applications involving lethality and survivability. Such
a hybrid approach is not feasible within the standard
framework of linear multi-step (LMS) methods that
exist in most Lagrangian codes [Zhou and Tamma,
2004]. The approach for developing hybrid and adap-
tive multi-scale computational algorithms is based on
the recent and highly successful developments of ro-
bust element based smart-switch algorithms in time
which smartly switch on/off the necessary algorithms
on an element basis for the given simulation model
(between a semi-implicit formulation which do not re-
quire any nonlinear iterations [Zhou et al., 2005] and
a explicit time formulations [Sha et al., 1996], both
of which have been derived from a novel theory on
the time dimension). The automated built-in switch
is based on the element physical and geometrical mea-
sures, and on the state of the damage variables; as
a consequence, if the time steps for explicit elements
in the numerical mesh become prohibitively small due
to severe large deformations and distortions, only the
corresponding elements are switched to semi-implicit
formulations with a much larger time step. Time adap-
tive features are embedded into the framework to pro-
vide optimal time steps for assessing both short/long
term dynamic simulations. Since the total simulation
framework of semi-implicit time formulations is read-
ily integrated to the naturally scalable explicit formu-
lations while the load balancing is performed appropri-
ately, the overall HPC simulations can readily handle
the multiple time scale applications.

The presentation of this exposition is outlined as
the follows. First the dynamic equilibrium equation in-

cluding frictional contact boundary conditions in Eule-
rian form is formulated. Then the deviatoric portion of
the hydrodynamic constitutive equation incorporating
the elasto-visco-thermo-plastic-damage is formulated.
And, the hydrostatic portion of the hydrodynamic con-
stitutive equation utilizing the equation of state and
internal energy equation is then discussed. The time
integration procedure is described. Finally, numeri-
cal validation are performed to demonstrate the appli-
cability and robustness of the present computational
framework and formulation.

2. EQUATION OF MOTION

Let the open set Ωt ⊂ <3 be the domain of inter-
est of the configuration at time t, with the bound-
ary ∂Ωt = Γft ∪ Γdt , Γft ∩ Γdt = ∅, and the closure
Ωt = Ωt ∪ ∂Ωt. For finite strain dynamic problems,
the dynamic equilibrium equation of the configuration
at time t in the Eulerian form with Cauchy stress is
described by

∂(ρtvt)
∂t

+ ρtηvt −∇ · σt = bt in Ωt (1)

σtn = f on Γft (2)
xt = xd on Γdt (3)

where ρt is the material density of the configuration
at time t, vt is the material particle velocity at time t,
σt is the Cauchy stress of the configuration at time t,
η is the viscous damping ratio in the sense of Rayleigh
damping, bt is the body force, n is the boundary sur-
face outward unit vector, xt is material particle coordi-
nate, Γft is the boundary subject to traction boundary
condition, Γdt is the boundary subject to prescribed
displacement boundary condition.

Let σn = σn = {σnk
} = −{niσijnjnk} ∈ <3 be

the normal stress on the contact surface, n be the nor-
mal direction vector on the contact surface, g ∈ <3 be
the relative gap vector between point pairs on the con-
tact surfaces. Let gn and gτ be the normal and tan-
gential directions of the gap vector g, then g = gn+gτ
and gn · gτ = 0. And, the impenetrable constraint in
the normal direction on the contact surfaces is given
as the following Kuhn-Tucker complementarity condi-
tions, (τn, gn − λcnn)Γc(t) = 0, λcn ≥ 0, ψn(σn) =
σ · n ≥ 0, λcnψn(σn) = 0, ∀ τn ∈ ψn(τn) ≥ 0,
where λcn ≥ 0 represents the impenetrability condition
on the contact surface, and (•, •)Γ =

∫
Γ
• : •ds repre-

sents the inner-product.
Let R = {V | V ∈ <3 × [0,∞)}, then a yield

function of the frictional stress vector in the tangen-
tial direction on the contact surface can be defined by
ψτ (στ ) = µc | σn | − | στ |≥ 0 on Γc × [0,∞), where
στ = {σtk} = −{niσik − niσkjnjnk} ∈ <3 is the tan-
gential stress vector on the contact surface, and µc ∈ <
is the Coulomb frictional coefficient.
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Let ġτ ∈ <3 be the the relative tangential ve-
locity of the point pairs on the contact surfaces,
the classical Coulomb friction law thus is repre-
sented by (τ τ − στ , ġτ ) ≤ 0, στ ∈ ψτ (στ ) ≥ 0,
∀ τ τ ∈ ψτ (τ τ ) ≥ 0. The corresponding weak
form employing the Lagrangian multiplier is given
as (τ τ , ġτ − λcτ∇στ

ψτ (στ ))Γc(t) = 0, ψτ (στ ) ≥ 0,
λcτ ≥ 0, λcτψτ (στ ) = 0, ∀ τ τ ∈ ψτ (τ τ ) ≥ 0, where
∇στ

ψτ (στ ) = ∂ψτ (στ )
∂στ

.
Define the following set of virtual displacement

field as, [H1
0 (Ωt)]3 := {w | w ∈ [H1(Ω)]3, w =

0 on Γd}, and the set of virtual velocity field as,
[H1

v (Ωt)]
3 := {v | v ∈ [H1(Ω)]3, v = ẋdt on Γd},

where H1(Ω) is the first order differentiable Hilbert
space. The Eulerian weak form of the dynamic equi-
librium equation subjected to the contact boundary
condition is given as the following.

(w, ∂(ρv)
∂t + ρηv)Ωt

+ (D(w),σ)Ωt

= (w, b)Ωt + (w,f)Γf (t) + (δg,σn + στ )Γc(t) (4)
(τn, gn − λcnn)Γc(t) = 0 (5)

(τ τ , ġτ − λcτ∇στψτ (στ ))Γc(t) = 0 (6)

and subject to the constraints λcn ≥ 0, ψn(σn) =
σn · n ≥ 0, λcnψn(σn) = 0, on Γc(t), and ψτ (στ ) ≥ 0,
λcτ ≥ 0, λcτψτ (στ ) = 0, on Γc(t).

In the matrix form, the equation of motion can be
written as,

Mü + Cu̇ + Ku = f(t) + G>sT + G>Nφ (7)
λ = N>G(x + u) ≥ 0 (8)
φ ≥ 0 (9)

λ>φ = 0 (10)

ṡT = −1
ε
(ġT + Aλ̇T ) (11)

µ|φ|a − ||sT ||a ≥ 0 (12)

where M is the mass matrix, C is the damping matrix,
K is the stiffness matrix, ü is the acceleration, u̇ is the
velocity, and u is the displacement, f is the external
loading, G is the constraint matrix, sT is the tangen-
tial contact force, N is the normal gap matrix, φ is the
normal contact force magnitude, λ is the normal gap
magnitude, x is the position vector, µ is the Coulomb
coefficition of friction, A is the tangential gap matrix,
and ε is an infinitesimal positive number.

3. CONSTITUTIVE EQUATION

Consider the isotropic damage hydrodynamic consti-
tutive equation given by,





σ̃ =
σ

1− ϕ
= σ̃D + σ̃H

σ̃∇D = 2GDe
D

σ̃H = −p(ρ, e)I
(13)

where σ̃ is the effective stress tensor, σ is the Cauchy
stress tensor, ϕ is the isotropic damage state variable,
σ̃D is the deviatoric portion of the effective stress ten-
sor, σ̃H is the hydrostatic portion of the effective stress
tensor, G is the shear modulus, De

D is the elastic part
for the deviatoric portion of the velocity strain tensor,
p is the hydrostatic pressure, ρ is the material density,
e is the internal energy per unit mass, I is the rank two
identity tensor, and the symbol •∇ denotes to either
the Jaunamm, the Green-Naghdi, or Truesdell stress
rate.

3.1 Damage Models for the Deviatoric Stress

From a practical perspective, the Lemaitre plastic-
damage model [Lemaitre, 1996] is adapted for the
deviatoric stress of the hydrodynamic constitutive
equation. For the low- and high-velocity im-
pact/penetration problems, when the amount of dissi-
pative work done by the plasticity and damage in the
system does not raise the temperature significantly,
for example, a projectile impacting on a thin struc-
ture, the Lemaitre plastic-damage model should be
applicable. However, when the amount of dissipa-
tive work gives rise to a rapid increase of temperature
for the material, for example, in the case of hyperve-
locity penetration problems, a temperature dependent
thermo-visco-plastic model such as the Johnson-Cook
fracture model [Johnson and Cook, 1985] needs to be
modified and incorporated into the Lemaitre plastic-
damage model to account for the temperature and
strain rate effect. The modified Johnson-Cook thermo-
visco-plastic-damage model is described next.

The von Mises tensile flow stress of the Johnson-
Cook model [Johnson and Cook, 1985] is given by,

σJC = (A+Bεn)(1 + C ln(
ε̇

ε̇0
))(1− T̃m) (14)

where A, B, C, n, and m are material constants,
ε0 = 1.0s−1, T̃ = (T − Troom)/(Tmelt − Troom), Troom
is the room temperature, Tmelt is the material melting
temperature. And the fracture strain of the Johnson-
Cook model [Johnson and Cook, 1985] is given by

εF = (D1 +D2e
D3

σH
σeq )(1+D4 ln(

ε̇

ε̇0
))(1+D5T̃ ) (15)

for σH

σeq
< 1.5, where D1-D5 are material constants.

For σH

σeq
≥ 1.5, the model becomes

εF = (D1 +D2e
1.5D3)(1 +D4 ln(

ε̇

ε̇0
))(1 +D5T̃ ) (16)

Let the thermo-visco-plastic-damage potential
function be

Ftvpd(σ, Rtvp(ε),Q−1(ε̇);Y, ϕ)

=ftvp(σ, Rtvp(ε),Q−1(ε̇);ϕ) + fd(Y, ϕ)
(17)
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where

ftvp = σ̃eq −Rtvp(ε)−Q−1(ε̇) ≤ 0 (18)

Rtvp = (A+Bεn)(1− T̃m) (19)

Q−1(ε̇) = frp = CRtvp ln(
ε̇

ε̇0
) (20)

Q(frp) = ε̇ = ε̇0e

frp

CRtvpH(frp) (21)

Y is the energy release rate density, fd is the damage
potential, ϕ is the damage internal variable, and H(•)
is the Heaviside function.

Thus, the Modified Johnson-Cook thermo-visco-
plastic-damage model yields the constitutive equation
in consistent form as

σ∇D = (1− ϕ)

(
C − C : ntvpd ⊗ ntvpd : C

ntvpd : C : ntvpd +Htvpd

)
: DD

(22)
where

Htvpd = h+ C(h+
ε̇0Rtvp

ε̇∆t
) ln(

ε̇

ε̇0
)

− H(ε− εD)σeq
(1− ϕ)2(εF − εD)

(23)

h = Bnεn−1(1− T̃m) (24)

ntvp =
3σD

2σeq
(25)

Temperature for Adiabatic Condition
During the high strain rate deformation, the tempera-
ture of the material rises due to the dissipative plastic
work. For the short duration of the material deforma-
tion under high strain rate, the thermal equilibrium
of the material cannot be established. Therefore, the
temperature raise can be computed by utilizing the
adiabatic condition. And, the temperature equation is
given as,

ρcṪ = ηeσ : (DD −De
D) (26)

where ρ is the material density, c is the material heat
capacity, and ηe = 0.9 is efficiency ratio [Bammann
et al., 1993].

3.2 Equation of State for the Hydrostatic Pres-
sure

The equation of state (EOS) along with the material
internal energy equation governs the relation between
the pressure and density implicitly, and serves as the
constitutive equations which express the state that the
material can achieve [Walsh and Christian, 1955]. The

rate of internal energy per current unit mass is given
as

ė =
1
ρ
(σD : D − p tr(D)) (27)

where p is the hydrostatic pressure, and tr(D) is the
trace of the velocity strain. And, the Mie-Grüneisen
equation of state [Walsh et al., 1957] considered here
is given by

p(ρ, e) = (1− 1
2
γµ)pH + γρe (28)

where µ = η − 1, η = ρ/ρ0, ρ0 is the material den-
sity at the initial reference state, γ is the Grüneisen
parameter, γ0 is the Grüneisen parameter at the ini-
tial reference state, pH is the Hugoniot pressure at the
density ρ.

Let σt+∆t
D be the deviatoric Cauchy stress at time

t+ ∆t obtained from the deviatoric part of the hydro-
dynamic constitutive relation, a time integration al-
gorithm for solving the hydrostatic pressure from the
equation of state is given as the following.

Algorithm 1
For the time increment from t to t+∆t, the hydrostatic
pressure can be integrated from following algorithm.

pt+∆t =
Aeos +Beosẽ

t+∆tρt+∆t

1 + 3Beosβ∆Et+∆t
H

(29)

where

Aeos = (1− 1
2
γµ)pH (30)

Beos = γ (31)

ẽt+∆t = et +
1

ρt+∆t

[
(ασtD + βσt+∆t

D ) : ∆Et+∆t

−3αpt∆Et+∆t
H

]
(32)

∆Et+∆t =
∫ t+∆t

t

Ddt′ (33)

∆Et+∆t
H =

∫ t+∆t

t

DHdt′ (34)

DH =
1
3
trace(D) (35)

σD = (1− ϕ)σ̃D (36)
β = 1− α (37)

Artificial Viscosity
For numerical shock wave computation, the artificial
viscosity is needed to stabilize the numerical oscilla-
tion [von Neumann and Richtmyer, 1950]. The classi-
cal artificial viscosity is adapted as the following.

q =

{
α1∆x2ρD2

H + α2∆xρDH DH < 0
0 DH ≥ 0

(38)
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where α1 and α2 are the artificial viscosity parameters,
∆x is the element characteristic length. Therefore, the
internal energy rate and the Cauchy stress is modified
as

ė = σ : D − 3(p+ q)DH (39)
σ = σD − (p+ q)I (40)

4. TIME INTEGRATION

The implementation procedures for updated
largrangian formulation of nonlinear dynamic system
with frictional contact boundary is described in the
following.

Time Integration 1
Preparing for start: set n = 0, if the element time
step is greater than the critical time step of central
difference method, set ξ̄ = 0.58383879542, otherwise
set ξ̄ = 0, and let matrix Q is updated for every j
step; Decompose the mass matrix M by M = LTL,
and let q = Lu.

1o. If n = 0 or n is integer time of the j then do fol-
lowing: set p = n and generate the tangential stiffness

matrix Kp, form the matrix K̃p, Q̃p, C̃,
∗
M̃ as

K̃p = L−>KpL−1 (41)

Q̃p = I +
(2ξ̄∗∆t)4

4!
K̃2
p (42)

C̃ = L−TCL−1 (43)
∗
M̃ = I +

1
2
∆tC̃ (44)

Employing Cholesky decomposition for the matrix Q̃p,
∗
M̃ as

Q̃p = L̃>D̃L̃ (45)
∗
M̃ = L̃>mD̃mL̃m (46)

2o. If n = 0 find ∆qn+1 by

L̃>D̃L̃∆qn+1 = ∆tq̇n +
1
2
∆t2q̈n (47)

3o Calculate resultant of stresses within structure
rn+1 and the vector r̃n+1

∆un+1 = L−>(∆qn+1) (48)
rn+1 = r(σn + ∆σ(∆un+1)) (49)
r̃n+1 = L−>rn+1 (50)

4o Using return map method to get sn+1
T :

sn+1
T = snT −

1
ε
(∆gT + A∆λT ) (51)

5o. Find φ, ∆qn+2, q̇n+1 and q̈n+1 by using the
linear complementary bi-projection (LCBP) method
to solve complementary equation:

λ(φ) = N>G̃(x̃n+1 + ∆qn+2(φ)) ≥ 0 (52)
φ ≥ 0 (53)

λT (φ)φ = 0 (54)

6o. n := n+ 1 goto 2o.

Remark 0.1
1. The algorithm is L-stable and second or-

der accuracy for nonlinear dynamic system
with frictional contact boundary when ξ̄∗ >
0.583838795422.

2. The algorithm is the central difference method
when ξ̄ = 0.

5. Numerical Validation

The numerical example considers experiments con-
ducted by Forrestal and Hanchak with blunt 4340 Rc
38 steel cylinder projectiles impacting circular HY-100
steel plates [Forrestal and Hanchak, 1999]. The mate-
rial parameter is described in Tabe 1. Quantitatively,
the numerical result of the present formulation cap-
tures the plug velocity with good agreement as demon-
strated in Figure 1. The numerical model effectively
captures this plugging failure qualitatively as shown in
Figure 2.

Concluding Remarks

In this exposition, we described a continuum damage
mechanics based Lagrangian hydrodynamic computa-
tional framework for 3D high- and hyper-velocity con-
tact/impact/damage/penetration applications. The
contributions of the paper included two aspects: (i)
a hydrodynamic constitutive relation including con-
tinuum damage mechanics; (ii) a robust time inte-
gration algorithm for the coupled equation of state
and the internal energy equation. A numerical ex-
ample were performed to validate the robustness and
the accuracy of the proposed framework for the con-
tact/impact/damage/penetration applications.
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HY-100 Steel 4340 Rc 38 steel
Material Properties
Shear Modulus [GPa] 77.5 77.5
Density [kg/m3] 7801 7822
JC Strength
A [MPa] 758.3 600
B [MPa] 402.3 509.5
C 0.011 0.014
T0 [K] 290 290
Tm [K] 1817 1793
n 0.26 0.26
m 1.13 1.03
Cp [J/kg K] 477 477
JC Fracture
D1 -0.61 -0.8
D2 2.07 2.1
D3 -0.5 -0.5
D4 0.01 0.002
D5 0 0.61
Spall strength [GPa] 5.723 5.723
Fracture strain 0.035 0.035
Damage
ϕc 0.99 0.99
εD/εF 0.6 0.6
EOS
K1 [GPa] 164 164
K2 [GPa] 294 294
K3 [GPa] 500 500
Γ 1.16 1.16

Table 1: Material constants for HY-100 Steel and 4340 Rc 38 steel

Figure 1: Velocity of plug node 116445 for an impact velocity of 246 m/s. The nodal velocity oscillates close to the
experimental value of 260 m/s.
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(a) Forrestal-Hanchak experimental results at 10 µs intervals
starting at 25 µs for an impact velocity of 246 m/s [Forrestal
and Hanchak, 1999]

(b) t=25 µs (c) t=35 µs

(d) t=45 µs (e) t=55 µs

(f) t=65 µs (g) t=75 µs

(h) t=85 µs (i) t=95 µs

Figure 2: Comparison of experimental and numerical simulation results showing the plugging failure and dynamic
deformation of the HY-100 steel plate for an impact velocity of 246 m/s
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